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1. Introduction

In the analysis of spatial data, the quantification of spatial associations between two vari-
ables is an important issue, and considerable effort has been devoted to the construction
of appropriate coefficients and tests for the association between two correlated variables.
One can approach this issue by removing the spatial association among the observations
and then applying existing techniques that have been developed for independent variables
(Cliff and Ord 1981, § 7.4). An alternative way to manage the problem is to consider
approaches that allow one to take into account the autocorrelation structure of the data.
Tjostheim (1978) developed a nonparametric technique to measure the association be-
tween spatial variables from the ranks of the observations and the location coordinates
of the measurement points. He also provided the asymptotic normality and asymptotic
formulae for bias and variance. Later, Tjostheim’s measure was generalized by Hubert
and Golledge (1982). Clifford et al. (1989) studied a modified test of association based on
the correlation coefficient by evaluating an effective sample size that takes into account
the spatial structure. Subsequently, Richardson and Clifford (1991) suggested several ad-
justments to the original test in order to improve its power. Furthermore, Richardson
et al. (1992) discussed how applications of this procedure could be used to study the
relationships between lung cancer in men and employment in different industries. Exten-
sions of this work can be found in Haining (1991), Dutilleul (1993), Dutilleulet al. (2008)
and Fotheringham and Rogerson (2009). Richardson and Guihenneuc-Jouyaux (2009)
reviewed several techniques to assess the spatial association between two geographical
variables in the context of spatial epidemiology.

The codispersion coefficient (Matheron 1965) is a measure of association between
two spatial variables and has been used in several applications (Chiles and Delfiner
1999; Goovaerts 1994, 1997, 1998). Such a measure is a normalized version of the cross-
variogram, being a crucial instrument for multivariate spatial prediction (Cressie 1993;
Ver Hoef and Barry 1998). Rukhin and Vallejos (2008) studied the codispersion coeffi-
cient from both theoretical and applied viewpoints, and established, for arbitrary lags,
the consistency and limiting distribution of the sample coefficient. As a consequence of
the asymptotic normality, these authors also addressed the hypothesis testing problem of
independence between two spatial sequences. The codispersion coefficient has also been
studied in time series to address how two time sequences change concurrently; it is a
geometrically natural comovement coefficient since it compares proportional slopes at
matched pairs of points across sequences (Croux et al. 2001). Expressions for the asymp-
totic variance of the coefficient were derived and the performance of the coefficient under
additive contamination was examined by Vallejos (2008). Recently established theoreti-
cal results for the codispersion coefficient are valid for processes defined on a rectangular
grid. However, there are many applications in which the spatial variables are defined
on non-regular grids, and where the asymptotic properties of this coefficient remain un-
known. Moreover, for two simultaneous autoregressive (SAR) processes, it is not difficult
to show that the codispersion coefficient is constant and that it does not provide any
information about the spatial association between the processes. Thus, determining more
flexible coefficients of association between two spatial processes is important.

The goal of the current paper is to develop a nonparametric version of the codisper-
sion coefficient. Extensions of this nature have previously been considered in the spatial
statistics literature. For example, nonparametric estimations of the semi-variogram were
examined by Garcia-Soidan et al. (2004), Yu, Mateu and Porcu (2007), and Garcia-
Soidan (2007), among others. First, an example that motivated the present work is
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introduced in Section 2. In Section 3 we propose a nonparametric (Nadaraya-Watson)
estimator for the cross-variogram between two spatial processes. Asymptotic expressions
for the expected value, variance and mean square error of the proposed estimator will be
provided. Next, the codispersion coefficient is computed using the nonparametric version
of the cross-variogram and the existing estimators of the semi-variogram of each variable.
Under regularity conditions, the consistency of the kernel estimation of the codispersion
coefficient is established. In Section 4 a bandwidth selection method associated with the
later estimation is proposed. Simulation studies are performed to support the theoretical
results. We report the results of the Monte Carlo studies in Section 5. The proposed
estimator for the codispersion coefficient is useful for quantifying the spatial association
between forest variables based on a study of Pinus radiata plantations in the south of
Chile. Through the use of codispersion maps, we explore in Section 6 the spatial associ-
ation of these variables. Finally, in Section 7 we discuss the implications of the current
results and briefly review future research directions.

2. A Motivating example

Here, we present an example of an issue that motivated the present work. Pinus radiata is
one of the most widely planted species in Chile; it is planted on a wide array of soil types
and in a variety of regional climates. Two important measures of plantation development
are the dominant tree height and the basal area. Snowdon argues convincingly that both
measures are correlated with regional climate and local growing conditions (Snowdon
2001). The variogram was used to characterize the spatial dependence of each variable.
However, the assessment of the spatial association between tree height, tree basal area
and other regional climate variables is of great interest for the quantification of spatial
dependence and the detection of those directions in which there is either high or low
degree of spatial association.

In the present article, we consider the relationship among the tree height, basal area,
elevation and slope of Pinus radiata plantations. The study site is located in the sector
Escuadrón, south of Concepción in the southern portion of Chile (36◦54’ S, 73◦54’ O)
and has an area of 1244.43 hectare. In addition to more mature stands, we were also
interested in the area containing young (i.e., four year old) stands of Pinus radiate, with
an average density of 1600 trees per hectare. The basal area and dominant tree height at
the year of plantation establishment (1993, 1994, 1995, and 1996) were used to represent
the stand attributes. The three variables were obtained from 200 m2 circular sample
plots and point-plant sample plots. For the latter type of sample, four quadrants are
established around the sample point; the four closest trees in each quadrant (16 trees
in total) are then selected and measured in a clockwise direction. The samples were
located systematically using a mean distance of 150 meters between samples. The total
number of plots available for this study was 468 (Figure 1). In addition to the tree height
and basal area, the coordinates, elevation and slope were recorded for each site. In this
study, the year of plantation was not consider relevant in terms of assessing the spatial
association between pairs of variables that are of interest. However, the year of plantation
establishement could have a significant effect that might be consider in further studies.

Commonly, a data set as the forest data set described above is considered as a spatial
point pattern having marks attached to each location. In this paper the locations are
considered fixed. This is supported by the way in which the locations were settled down
when the trees were planted on a rectangular grid. The sampling schemme in this case
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preserved this structure as is shown in Figure 1.

3. Definitions and main results

Throughout the paper we shall consider intrinsically stationary random fields {X(s), s ∈
D ⊂ Rd} with semi-variogram defined as

γX(k) =
1

2
var{X(s+ k)−X(s)},

where k ∈ Rd denotes the spatial lag. For n sampling sites s1, s2, . . . , sn, a natural and
unbiased estimator based on the method of moments is the empirical semi-variogram
(Matheron 1963) given by

γ̂X(k) =
1

2|N(k)|
∑
N(k)

(X(si)−X(sj))
2, (1)

where N(k) = {(si, sj) : ||si − sj || ∈ T (k), 1 ≤ i, j ≤ n}, T (k) is a tolerance region
around k, and where | · | denotes cardinality of a set. Alternatively to the empirical semi-
variogram, robust estimators have been proposed (Cressie and Hawkins 1980; Genton
1998). Garcia-Soidan (2007) proposed a Nadaraya-Watson type estimator for the semi-
variogram defined as

γ̆Xh(k) =

∑n
i=1

∑n
j=1K

(
k−(si−sj)

h

)
(X(si)−X(sj))

2

2
∑n

i=1

∑n
j=1K

(
k−(si−sj)

h

) , (2)

where h represents a bandwidth parameter and K : Rd −→ R is a symmetric and
strictly positive density function. For such an estimator, Garcia-Soidan (2007) establishes,
under regularity conditions, consistency and asymptotic normality, and addresses the
inadequate behavior of estimator (2) near the endpoints.

Let {(X(s), Y (s)) : s ∈ D ⊂ Rd} be a bivariate intrinsically stationary random field
on D with cross-variogram 2γXY (·) : Rd → R defined through (Cressie 1993, pp. 67)

2γXY (k) = E[(X(s+ k)−X(s))(Y (s+ k)− Y (s))], (3)

for all s, s+k ∈ D, and with marginal variograms 2γX , 2γY as defined through Equation
(3). The codispersion coefficient (Matheron 1965) is a normalized version of (3) and
defined through

ρXY (k) =
γXY (k)√
γX(k)γY (k)

.

Rukhin and Vallejos (2008) found a closed form for the coefficient ρXY (·) for spatial
autoregressive processes under particular assumptions on the correlation structure of the
errors and when considering a rectangular lattice. These expressions are also valid for
time series models; however, the selection of a parametric model for the cross-variogram
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function is not trivial. Indeed, Chiles and Delfiner (1999, pp. 330) show that a mul-
tivariate model with exponential variograms γX(k) = γY (k) = 1 − e−b|k|, b > 0, and a
cross-variogram of the form γXY (k) = ρ(1 − ec|k|), c > 0, is not valid. Moreover, the
only case in which the model can be valid is when b = c, with the consequence that
ρXY (k) = ρ. An extensive discussion about efficient approaches to construct valid vari-
ograms matrix functions can be found in Gneiting et al. (2010) as well as in Stein (2007).
One way to avoid such a drawback is to consider a nonparametric approach to assess the
estimation of both the cross-variogram and the codispersion coefficient.

The analogue of Matheron’s estimator for the cross-variogram is obtained through

γ̂XY (k) =
1

2|N(k)|
∑
N(k)

(X(si)−X(sj))(Y (si)− Y (sj)), (4)

where N(k) is defined as in Equation (1). The corresponding empirical estimator of the
codispersion based on (4) is given by

ρ̂XY (k) =
γ̂XY (k)√
γ̂X(k)γ̂Y (k)

. (5)

The analogue of the Nadaraya-Watson type estimator for the cross-variogram is instead
given by

γ̆XY h(k) =

∑n
i=1

∑n
j=1K

(
k−(si−sj)

h

)
(X(si)−X(sj)) (Y (si)− Y (sj))

2
∑n

i=1

∑n
j=1K

(
k−(si−sj)

h

) , (6)

where K(·) is a kernel function as in Equation (2). Here, we extend the results of Garcia-
Soidan (2007) for the semi-variogram to the case of the estimator at (6). In the current
case, we find asymptotic expressions for the bias and mean square error of (6). The
required assumptions for the results that we present below are the following:

(A1) D = Dn = λD0 for some increasing sequence λ = {λn}∞n , and for some fixed and
bounded region D0 ⊂ Rd containing a sphere with positive d-dimensional volume.

(A2) f0 is a density function in D0. We assume that α1 < f0(x) < α2 for all x ∈ D0

and for some α1, α2 > 0.
(A3) The spatial locations will be set as si = λui, for 1 ≤ i ≤ n, where u1, . . . ,un

are independent realizations of a random vector with density function f0. The
subjacent vectors variables will be denoted by U1, . . . ,Un.

(A4) fi is the density function of the random vector (U1 − U2, . . . ,U1 − U i+1), for
i ∈ N, i ≥ 1. f1(0) > 0 and fi is a continuously differentiable function in a
neighborhood of 0+ for all i ∈ N, 1 ≤ i ≤ 4l − 1, and l ≤ 1.

(A5) K is a d−variate symmetric, bounded kernel with compact support, with covari-
ance matrix given by cKId, for some cK > 0, where Id the identity matrix of order
d.

(A6) {h+ λ−1 + (nhd)−1 + λdn−1)} −→ 0, as n −→∞.
(A7) E[X(s)4m] < +∞ for all s ∈ D, and m ≥ 1. Moreover, for all i ∈ N, 1 ≤ i ≤ m,

• There exists a function gi : R(4i−1)d → R continuous and differentiable such that
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for all s1, s2, . . . , s4i ∈ D,

E

 2i∏
j=1

((X(s2j−1)−X(s2j))
2 − E((X(s2j−1)−X(s2j))

2))

 = gi(s1−s2, . . . , s1−s4i).

• One has for x > 0,

Ii(x) =

∫
Ai(x)

|gi(ξ1, ξ2, . . . , ξ4i)|dξ1dξ2 . . . dξ4i−1 <∞,

where Ai(x) is the set of all vectors (s1, . . . , s4i−1) ∈ R(4i−1)d satisfying ||s1|| ≤ x
when ||s2j − s2j+1|| ≤ x for all j ∈ N, 1 ≤ j ≤ 2i− 1.

Condition (A7) also holds for Y (s) not necessarily with the same function gi. Under
assumptions (A1)−(A7) Garcia-Soidan (2007) found asymptotic expressions for the bias
and mean square error of estimator (2). In order to establish the same results for the
estimator defined through Equation (6) it is necessary to add the following assumptions:

(H1) There exists a bounded continuous differentiable function ψ : R3d → R such that
for all s1, . . . , sn ∈ D,

Cov[(X(si)−X(sj))(Y(si)−Y(sj)), (X(sk)−X(sl))(Y(sk)−Y(sl))]

= ψ(si − sj , si − sk, si − sl).

(H2) For all x > 0, η(x) =
∫
L(x) |ψ(ξ1, ξ2, ξ3)| dξ1dξ2dξ3 ≤ ∞, where L(x) corre-

sponds to the set of all (s1, s2, s3, s4) ∈ R4d such that ||s1|| < x when ||s2 − s3|| ≤
x and ||s3 − s4|| ≤ x.

Theorem 3.1 : Let {(X(s), Y (s)) : s ∈ D ⊂ Rd} be a bivariate intrinsically stationary
random field. Suppose that Assumptions (A1)-(A7), (H1), (H2) hold with l = 1. In
addition assume that γXY (k) is three times continuously differentiable in a neighborhood
of k 6= 0. Then

E[γ̆XY h(k)] = γXY (k) + h2 cK
2
4γXY (k) + o(h2),

V ar[γ̆XY h(k)] =
dKA1,d(k)

2f1(0)
n−2λdh−d +

f3(0,0,0)A2,d(k)

(2f1(0))2
λ−d

+ o(n−2λdh−d + λ−d + h4),

where cK is as in (A5), dK =
∫
Rd K

2(ξ)dξ, A1,d(k) = ψ(k,0,k), A2,d(k) =
∫
Rd ψ(k, ξ, ξ+

k)dξ, f3(0,0,0) is as in (A4), f1(0) is as in (A3) and 4γXY (k) =
∑d

j=1
∂2γXY (l)

∂l2j

∣∣∣
k

.

For a neater exposition, the proofs of all results stated in Sections 3 and 4 are left to
the Appendix A.

An expression for the mean square error of estimator (6) can be derived as an immediate
consequence of Theorem 3.1. In fact, if λ = O(nhd/2), then

MSE[γ̆XY (k)] = O(n−8/(8+d)).
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Assumptions (A1)-(A4) are related to the domain D, the locations si ∈ D and func-
tions fi. These assumptions are the usual requirements to perform infill asymptotics. An
example in which we chose all quantities involved in these assumptions will be given in
Section 5 in a simulation framework. Assumption (A5) is general in the sense that does
not require differentiability as in Garcia-Soidan (2007). Assumption (A6) is required for
the asymptotic variance of estimator (6) in Theorem 3.1. In order to have a finite co-
variance between the increments of processes X(·) and Y (·), condition (A7) is assumed
as regards the random processes. Assumptions (H1) and (H2) are not too restrictive. An
example in which these conditions are satisfied can be found in Appendix A.

A kernel type estimator of the codispersion coefficient is

ρ̆XYh
(k) =

γ̆XY h1 (k)√
γ̆Xh2 (k)γ̆Yh3 (k)

, (7)

where h = (h1, h2, h3), γ̆XY h1 (k) is as in (6) and γ̆Xh2 (k) is as in (2). For ρ̆XYh
(k) we

can establish the following result.

Theorem 3.2 : Let {X(s) : s ∈ D ⊂ Rd} and {Y (s) : s ∈ D ⊂ Rd} be two intrinsically
stationary processes. Suppose that for both processes assumptions (A1)-(A7) and (H1)-
(H2) hold, with different kernels functions in (A5) and different gi functions in (A7).
Then

ρ̆XY h
(k)

P−→ ρXY (k), as n→∞.

The problem of unsatisfactory behavior of the estimators near the endpoints has been
treated in the literature. The procedures proposed are based on appropriate modifications
of the estimator considered, in order to achieve consistency as well as to retain rates
of convergence. For a detailed discussion the reader is deferred to Garcia-Soidan et al.
(2004).

Bandwidth selection plays an important role in kernel estimation. In order to study
the computational implementation of estimator (7) and later use it to analyze real data
sets, the bandwidth selection associated with estimators (2) and (6) shall be addressed
in the next section.

4. Bandwidth selection

There are several criteria to consider when selecting a bandwidth, depending on the area
of study and type of data. Ruppert et al. (1995) studied an effective band selector for
regression analysis. In econometrics, some bandwidth selection criteria are discussed in Li
and Racine (2006). Recently, Kohler et al. (2011) compared bandwidth selection methods
for kernel regression. For an example of bandwidth selection in spatial statistics, see Hallin
et al. (2004). It is apparent from (7) that the bandwidth of the nonparametric estimator
of the codispersion coefficient depends on three different bandwidth parameters: two
associated with the semi-variograms of X(·) and Y (·) and one associated with the cross-
variogram between the processes.
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4.1. Bandwidth Selection for the Semi-Variogram

Garcia-Soidan et al. (2004) suggested a method to compute the bandwidth associated
with the semi-variogram of an intrinsically stationary process. This criterion is based
on the minimization of an asymptotic mean square error (AMSE). We suggest to use
asymptotic versions of the integrated square error (AMISE). By Theorem 3.1, we obtain

AMISE[γ̆Xh(k)] = h4 c
2
K

4

∫
Rd

(4γX(ξ))2 dξ +
dK

2f1(0)
n−2λdh−d

∫
Rd
B1,d(ξ)dξ (8)

+
f3(0,0,0)

(2f1(0))2
λ−d

∫
Rd
B2,d(ξ)dξ,

where B1,d(k) = g1(k,0,k), B2,d(k) =
∫
Rd g1(k, ξ,k + ξ)dξ and 4γX(k) =∑d

j=1
∂2γX(l)
∂l2j

∣∣∣
k
.

One of the major drawbacks concerning the right hand side of (8) is the fact that
the integrals are defined on Rd, but in most of the cases, (4γ(k))2 is not bounded in a
neighborhood of 0, because the variograms may not be differentiable at the origin. To
avoid this concern, we suggest to use a twice differentiable variogram at the origin and
an appropriate selection of the support.

Theorem 4.1 : The bandwidth hAMISE that minimize AMISE[γ̆Xh(k)] is given by

hAMISE =

(
d

4

C2

C1

) 1

d+4

,

where

C1 =
c2
K

4

∫
Rd

(4γX(ξ))2 dξ,

C2 =
dK

2f1(0)
n−2λd

∫
Rd
B1,d(ξ)dξ,

cK , dK , and f1(0) are as in Theorem 3.1 and B1,d is as in Equation (8).

In order to illustrate the computation of the bandwidth given in Theorem 4.1, we
assume D = B(0, φ), the ball of Rd centered at 0 with radius φ, i.e. D = {s ∈ Rd :
||s|| ≤ φ} and consider an isotropic semi-variogram γX(||k||). Then

∫
D
γ2(ξ)dξ =

∫
D
γ2
X(||ξ||)dξ,

= Sn−1(1)

∫ φ

0
γ2
X(ξ)ξdξ, (9)
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where Sn−1(1) is the volume of the n− 1 dimensional unit sphere. Using

∂||k||
∂ki

=
ki
||k||

,

∂γX(||k||)
∂ki

= γ
′

X(||k||) ki
||k||

,

∂2γX(||k||)
∂k2

i

= γ
′′

X(||k||) k2
i

||k||2
+
γ
′

X(||k||)
||k||

(
1− k2

i

||k||2

)

where γ′(||k||) and γ′′(||k||) respectively denote the first and second derivative of the
variogram with respect to k, one obtains

4γX(||k||) =

d∑
i=1

∂2γX(||k||)
∂k2

i

= γ
′′

X(||k||) + (n− 1)
γ
′

X(||k||)
||k||

.

Moreover, ∫
D

(4γ(ξ))2dξ =

∫
D

(4γX(||ξ||))2dξ

=

∫
D

(
γ
′′

X(||ξ||) + (n− 1)
γ
′

X(||ξ||)
||ξ||

)2

dξ

= Sn−1(1)

∫ φ

0

(
g
′′
(ξ) + (n− 1)

g
′
(ξ)

ξ

)2

ξdξ. (10)

Replacing expressions (9) and (10) in (8) one gets

hAMISE =

dn−2λddk
c2
k2f1(0)

∫ φ
0 γ2

X(ξ)ξdξ∫ φ
0

(
γ
′′

X(ξ) + (n− 1)
γ
′
X(ξ)
ξ

)2
ξdξ


1

4+d

. (11)

In Table 1, the values of 4γX(||s||) for different isotropic parametric semi-variograms
models are given. In particular, when an Epanechnikov kernel is used, f1(0) is uniformly

distributed, λd = n
8

8+d (Garcia-Soidan 2007) and d = 2, hAMISE in (11) becomes

hAMISE = n−1/522/331/3

 ∫ φ
0 γ2

X(ξ)ξdξ∫ φ
0

(
γ
′′

X(ξ) + (n− 1)
γ
′
X(ξ)
ξ

)2
ξdξ


1

6

.

If there exist geometric anisotropy characterized by a positive definite matrix A, the
extension of rule (8) is straightforward considering that in this case D = {s ∈ Rd :√
s′As ≤ φ},
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Table 1. Values of 0 ≤ t 7→ 4γX(t) for isotropic models (||k|| =: t). In the Matérn model Γ(κ) is the
gamma function and Kκ is a modified Bessel function of the second kind of order κ.

Model γX(t) 4γX(t)

Exponential σ2 − σ2 exp
(
− t
φ

)
− e
− t
φ σ2(t+φ−nφ)

tφ2

Gaussian σ2 − σ2 exp

(
−
(
t
φ

)2
)

2e
− t

2

φ2 σ2(−2t2+nφ2)
φ4

Exp - Power σ2 − σ2 exp
(
−
(
t
φ

)κ)
−
e
−( tφ )κ

κσ2
(
2−n+κ

(
−1+

(
t
φ

)κ))( t
φ

)κ
t2

Wave σ2 − σ2φ
t

sin
(
t
φ

)
σ2
(
−t(−3+n)φcos

[
t
φ

]
+(t2+(−3+n)φ2)sin

[
t
φ

])
t3φ

Matérn σ2

2κ−1Γ(κ)

(
t
φ

)κ
Kκ

(
t
φ

)
−

21−κσ2
(
t
φ

)κ−1(
tKκ−2

(
t
φ

)
−nφKκ−1

(
t
φ

))
φ3Γ(κ)

Wendland C2 σ2

(
1−

(
(υ + 1)

(
h
φ

)
+ 1
)(

1−
(
h
φ

))υ+1
)

σ2(1+υ)(2+υ)
(
1−h

φ

)υ
(h(d+υ)−dφ)

(h−φ)φ2

∫
D
γ2(ξ)dξ = |A|−1/2Sn−1(1)

∫ φ

0
γ2
X(ξ)ξdξ,

4γ(s) = γ
′′

X(||A1/2s||) + (tr(A)− 1)
γ
′

X(||A1/2s||)
||A1/2s||

,

∫
D

(4γ(ξ))2dξ = |A|−1/2Sn−1(1)

∫ φ

0

(
γ
′′

X(ξ) + (tr(A)− 1)
γ
′

X(ξ)

ξ

)2

ξdξ,

where tr(·) represents the trace operator.

4.2. Bandwidth Selection for the Cross-Variogram

Because of the difficulties in selecting an appropriate parametric model for the cross-
variogram, the bandwidth selection method described for the semi-variogram cannot be
easily emulated to produce a rule for computing the bandwidth associated with the cross-
variogram. However, a simple approach to manage this problem is to consider that the
bandwidth of the cross-variogram is in some way related to the variability of processes
X(·) and Y (·). Denoting these bandwidths as hX and hY , respectively, an estimation of
the bandwidth for the cross-variogram is

ĥXY =
σ̂2
X ĥX + σ̂2

Y ĥY
σ̂2
X + σ̂2

Y

, (12)

where in practice, σ̂2
X and σ̂2

Y can be obtained by fitting a parametric model to the
empirical semi-variogram (e.g., one from the models described in Table 1). The bandwidth
suggested in Equation (12) can be generalized through quasi arithmetic compositions
(Porcu et al. 2009). Part of the material we describe here is largely readapted from the
mentioned reference, where such compositions are treated in a more general framework
and then devoted to the composition of covariance functions. The result in Proposition
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4.3 is instead new and its proof deferred to the Appendix.

Definition 4.2: (Quasi-arithmetic compositions) Let Φ be the class of continuous

functions ϕ with proper inverse. If ĥX : R+ → R+ and ĥY : R+ → R+ such that

ĥX + ĥY ⊂ D(ϕ−1) for some ϕ ∈ Φ, the quasi-arithmetic composition of ĥX and ĥY with
generating function ϕ and weight θ ∈ [0, 1] is defined as the functional

ψθ

(
ĥX , ĥY

)
:= ϕ

(
θϕ−1 ◦ ĥX + (1− θ)ϕ−1 ◦ ĥY

)
, (13)

where ◦ denotes composition.

Throughout the paper, we refer to ϕ ∈ Φ as the generating functions of ψθ with weight
θ.

Ordering relations as well as a minimal element can be found among the set of
quasi-arithmetic compositions of two ĥX , ĥY fixed functions indexed by convex gen-
erating functions. For a given 0 < θ < 1, we have Gθ(ĥX , ĥY ) := ĥθX ĥ

1−θ
Y , which is

the quasi-arithmetic composition associated with ϕ(t) = exp(−t) that generates a ge-
ometric average, with the conventions ln(0) = −∞ and exp(−∞) = 0. Also, we have

Aθ(ĥX , ĥY ) = θĥX + (1− θ)ĥY , that is the quasi-arithmetic composition associated with

ϕ(t) = M(1− t/M)+ that generates the arithmetic average, where M > max
(
ĥX , ĥY

)
.

Finally, we have Hθ(ĥX , ĥY ) = θ

ĥX
+ 1−θ

ĥX
, the quasi-arithmetic composition associated

with ϕ(t) = 1/t and generating the harmonic average, with the conventions 1/∞ = 0,
1/0 =∞ and 0/0 = 0.

Many pleasant properties of such a framework can be deduced from the results in
Hardy et al. (1934) as well as those presented in Porcu et al. (2009). Here, we present
a new result that gives a characterization for the association measure proposed in this
paper.

Proposition 4.3: Let 0 < θ < 1. Let ĥX and ĥY be a pair of mappings from R+ into

R+. If ĥX and ĥY are upperly bounded, then for any generating function ϕ ∈ Φ, the
matrix

Σ :=

ψθ (ĥX , ĥX) ψθ (ĥX , ĥY )
ψθ

(
ĥY , ĥX

)
ψθ

(
ĥY , ĥY

)2

i,j=1

,

is positive definite.

The bandwidth estimation provided by Theorem 4.1 and (12) allows us to implement
computationally the Nadaraya-Watson estimator of the codispersion given in (7). Other
results can be deduced from the arguments in Porcu et al. (2009) and the references
therein. We report them, adapted to our case, for the sake of a self expository manuscript.

For any pair of mappings g1, g2 : R2 → R, Let us write g1 ≤ g2 whenever g1(x1, x2) ≤
g2(x1, x2) for any (x1, x2) ∈ R2. The following facts are true and represent a special case
of Proposition 1 in Porcu et al. (2009):

Let ϕ,ϕi ∈ Φ, i = 1, 2 and let us use the abuse of notation ψ
(i)
θ for the quasi arithmetic

composition associated to ϕi. Then,

• if ϕ−1 ◦ ϕ is convex, then ψ
(1)
θ ≤ ψ

(2)
θ ;
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• if ϕ−1 ◦ ϕ is concave, then ψ
(1)
θ ≥ ψ

(2)
θ ;

• If ϕ is convex, then ψθ ≤ Gθ ≤ Aθ;
• As a special case, we get the classic inequality between mean values Hθ ≤ Gθ ≤ Aθ.

As a last remark, the special case θ = 1/2 is called Archimedean composition and has
been well known under the framework of copula modelling, for which many references
can be found again in Porcu et al. (2009).

5. Simulations

We report finite-sample simulations results for the nonparametric codispersion coeffi-
cient described in (7) . The simulations were performed in R (R Development Core
Team 2012, version 2.11.1). We consider d = 2 and the locations of both processes
to belong to the region Dn = λnD0, where λn = n8/(8+d)d, D0 = [0, 1] × [0, 1], and
λn = 1502/5, 3002/5, 5002/5. The random observations considered in this study were gen-
erated from a zero mean bivariate Gaussian random field with a covariance matrix asso-
ciated with a parsimonious bivariate Matérn covariance function (Gneiting et al. 2010)
defined through

C11(k) = σ2
1M(k|ν1, a),

C22(k) = σ2
2M(k|ν2, a),

C12(k) = C21(k) = ρ12σ1σ2M(k,
1

2
(ν1 + ν2), a),

where M(k|ν, a) = 21−ν

Γ(ν) (a||k||)νKν(a||k||), Kν is a modified bessel function of the second

kind, a > 0, and the correlation coefficient is bounded by the ratio of the harmonic mean
and the arithmetic mean of the marginal smoothness parameters, i.e.

|ρ12| <
(ν1ν2)1/2

1
2(ν1 + ν2)

.

Several scenarios for inspecting the performance of the kernel estimator of the codisper-
sion coefficient were explored. To quantify the quality of the estimations, the simulation
mean, standard deviation and bias were used. The estimator (7) was implemented for
K2(x, y) = K(x)K(y), where K(·) corresponds to the Epanechnikov kernel. The band-
width associated with estimator (6) was computed according to the formula (12). The
experimental results were obtained from five hundred runs, where in each run, samples of
size 150, 300, and 500 were generated for both processes. The samples were drawn from
a uniform distribution on the square Dn. In each run a bivariate Gaussian random field
with a parsimonius Matérn covariance structure was generated for ν1 = 0.5, ν2 = 1.5,
a = 1, σ1 = σ2 = 1, and ρ12 = 0.3. The kernel cross-variogram and codispersion coeffi-

cient were computed for k = (
√

2
2 ,
√

2
2 ) and k = (

√
2,
√

2). The results of the simulation
study are summarized in Table 2.

There are clear patterns for the performance of the Nadaraya-Watson versions of the
cross-variogram and codispersion coefficient (Table 2). As is expected, in both cases, the
simulation standard deviation is decreasing when the sample size increases. The same
behavior is observed for the bias of the estimations when k = (

√
2,
√

2). Otherwise, there
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Table 2. Mean, standard deviation, and bias associated with estimators (4)-(6) and (7) for
different sample sizes.

ν1 = 0.5, ν2 = 1.5, a = 1, ρ12 = 0.3, γXY (k) = 0.1194278, ρXY (k) = 0.2922169, k = (
√

2
2
,
√

2
2

)

n = 150
mean s. d. bias

γ̆XY h(k) 0.1145731 0.0652170 -0.0048547
ρ̆XY h(k) 0.2809323 0.1353071 -0.0112850

n = 300
mean s. d. bias

γ̆XY h(k) 0.1284656 0.0533544 0.0090378
ρ̆XY h(k) 0.2957279 0.1049523 0.0035110

n = 500
mean s. d. bias

γ̆XY h(k) 0.11846810 0.04569728 -0.0009597
ρ̆XY h(k) 0.28139460 0.09107407 -0.0108220

ν1 = 0.5, ν2 = 1.5, a = 1, ρ12 = 0.3, γXY (k) = 0.2160805, ρXY (k) = 0.3015092, k = (
√

2,
√

2)

n = 150
mean s. d. bias

γ̆XY h(k) 0.1830274 0.1548548 -0.0330530
ρ̆XY h(k) 0.2679031 0.1973018 -0.0336060

n = 300
mean s. d. bias

γ̆XY h(k) 0.2176805 0.1247773 0.0016000
ρ̆XY h(k) 0.2940617 0.1416656 -0.0074480

n = 500
mean s. d. bias

γ̆XY h(k) 0.2163228 0.0997228 0.0002420
ρ̆XY h(k) 0.3006988 0.1121421 -0.0008100

is not a clear pattern for the bias. the kernel estimations of the semi-variograms (not
reported here) were not as good as the kernel estimations of the cross-variogram and
codispersion coefficient.

Rukhin and Vallejos (2008) studied the performance of the empirical estimator of
the codispersion coefficient with respect to the correlation ρ12 between the processes.
Here, we conducted a Monte Carlo simulation experiment to evaluate the performance of
estimators (4), (5), (6), and (7) as a function of ρ12. One hundred and fifty points were
randomly generated from a bivariate uniform distribution on the region Dn. Afterward,
a single realization from a Gaussian process with a full bivariate Matérn covariance
structure defined through (Gneiting et al. 2010)

C11(k) = σ2
1M(k|ν1, a1),

C22(k) = σ2
2M(k|ν2, a2),

C12(k) = C21(k) = ρ12σ1σ2M(k, ν12, a12),

was assigned to each of the selected locations with σ1 = σ2 = 1, a1 = a2 = a12 = 1,
ν1 = 0.5, ν2 = 1.5, and ν12 = 1. In each run, the AMISE associated with the estimations
(4), (5), (6), and (7) was computed for ρ = 0; 0.2; 0.4; 0.6; 0.8. Table 3 shows a decreasing
trend of the AMISE associated with the kernel codispersion coefficient as a function
of ρ. Moreover, the kernel codispersion coefficient shows superior performance relative
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Table 3. AMISE (mean and standard deviation) associated with estimators (4)-(6) and (7) versus ρ12.
ρ12 0 0.2 0.4 0.6 0.8
AMISE[γ̂XY (k)] 0.8831 (0.9930) 1.0310 (1.3807) 0.8831 (0.9930) 2.5129 (2.0581) 0.8831 (0.9930)
AMISE[γ̆XY h(k)] 1.1498 (1.0453) 1.0614 (1.4014) 0.9287 (1.0453) 2.4981 (1.8343) 3.1784 (2.5377)
AMISE[ρ̂XY (k)] 0.9287 (0.6722) 0.9601 (0.5523) 1.1498 (0.6722) 0.5286 (0.4274) 1.1498 (0.6722)
AMISE[ρ̆XY h(k)] 1.0712 (0.7048) 0.8795 (0.5501) 1.0712 (0.7048) 0.4812 (0.4203) 0.1766 (0.0824)

to the empirical estimator for ρ ≥ 0.2. The standard deviations of both estimators
of the codispersion are comparable except for ρ = 0.8. There are no clear patterns
for the performance of the kernel cross-variogram relative to the empirical estimator.
These results are consistent with the results reported by Rukhin and Vallejos (2008) and
highlights the importance of the semi-variogram estimation on the codispersion.

We carried out a third Monte Carlo simulation study to explore the performance of
estimators (4), (5), (6), and (7) when the smoothness parameters of the correltion func-
tion vary. Under the same conditions as in the previous simulation studies five hundred
simulation runs were computed and associated to the locations that are on the region
Dn, n = 150. The random observtions were drawn from a bivariate Gaussian distribution
with a parsimonious Matérn correlation structure. Three sets of smoothing parameters
were considered: ν1 = ν2 = 0.5; ν1 = 0.5, ν2 = 2.5; and ν1 = ν2 = 2.5. For each run the
mean value and the stardard deviation of the AMISE were recorded. The average values
and the standard deviations of the AMISE over these replicates can be found in Table 4.

The performance of the kernel codispersion coefficient is better than that of the em-
pirical estimator except for one case (ν1 = 0.5, ν2 = 0.5) in which the standard deviation
of the empirical estimator is smaller than the standard deviation of the kernel codis-
persion coefficient. In general, we observe that the mean values and standard deviations
associated with all estimations do not change drastically when ν1 = ν2.

Putting together all the information collected from the three simulations studies re-
ported in this section, we think that the kernel estimation of the codispersion is a good
alternative to the empirical estimator with overall better performance under the setup
described above.

6. An Application to forest variables

In this section, we illustrate how the proposed nonparametric approach can be used to
estimate the codispersion coefficient for the four forest variables previously described in
Section 2. The sample locations where the observations were collected are shown in Figure
1. The goal of this approach is to estimate the spatial relationship between all possible
pairs of the variables of basal area, height, elevation, and slope. The first two variables
characterize the growing process of the Pinus radiata and are specifically associated to the
trees. The last two (environmental) variables are related to the terrain. Figure 2 shows
a simple bilinear interpolation and the corresponding contours for the four variables.
To use the proposed rule (12) to compute the bandwidth for the semi-variograms and
cross-variogram, the parameters of the density f1(0) need to be estimated. To acomplish
this, consider the distribution

f0(x, y) =
1

(b− a)(d− c)
1B(x, y), (14)
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Figure 1. 468 sample locations where the variables were collected in the south of Chile (36◦54’
S, 73◦54’ O).
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Figure 2. Bilinear interpolation of the variables under study.
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Table 4. AMISE (mean and standard deviation) associated
with estimators (4)-(6) and (7) for different values of the
smoothness parameters.

a1 = a2 = a12 = 1, ρ12 = 0.3, n = 150, ν12 = 1
2
(ν1 + ν2)

ν1 ν2

AMISE[γ̂XY (k)] 0.853115 (0.5698374) 0.5 0.5
AMISE[γ̆XY h(k)] 0.904262 (0.5286199) 0.5 0.5
AMISE[ρ̂XY (k)] 0.721578 (0.4374963) 0.5 0.5
AMISE[ρ̆XY h(k)] 0.689808 (0.4110937) 0.5 0.5

ν1 ν2

AMISE[γ̂XY (k)] 1.0735390 (0.8620709) 0.5 2.5
AMISE[γ̆XY h(k)] 1.0720410 (0.8190623) 0.5 2.5
AMISE[ρ̂XY (k)] 0.9287875 (0.4988746) 0.5 2.5
AMISE[ρ̆XY h(k)] 0.8404175 (0.5141708) 0.5 2.5

ν1 ν2

AMISE[γ̂XY (k)] 0.8531148 (0.5698374) 2.5 2.5
AMISE[γ̆XY h(k)] 0.9042624 (0.5286201) 2.5 2.5
AMISE[ρ̂XY (k)] 0.7215775 (0.4374963) 2.5 2.5
AMISE[ρ̆XY h(k)] 0.6898077 (0.4110935) 2.5 2.5

where B = {(x, y) ∈ R2 : a ≤ x ≤ b y c ≤ y ≤ d}. A straightforward calculcation shows
that that if (X1, Y1) and (X2, Y2) are two independent and identically distributed random
vectors with density f0(·, ·), then the density of the vector (X1−X2, Y1−Y2) is given by

f(w1, w2) =
Ta,b(w1)Ta,b(w2)

(a− b)2(c− d)2
,

where

Ta,b(t) =


0, t ≤ a− b
t+ (b− a), a− b ≤ t ≤
(b− a)− t, 0 < t ≤ b− a
0, t ≥ b− a.

Then,

f1(0, 0) =
1

(b− a)(d− c)
.

Denoting the coordinates by (λ−1x, λ−1y), the maximum likelihood estimations of
the parameters of (14) are a = mini{λ−1xi}, b = maxi{λ−1xi}, c = mini{λ−1yi},
and d = maxi{λ−1yi}. Replacing the available data, we obtained a = 59381.69, b =
59828.03, c = 527400.8, and d = 527824.8. To fit semi-variograms to each variable, esti-
mator (2) was used with a separable kernel of the form K2(x, y) = K(x)K(y), where K(·)
is the Epanechnikov kernel. The bandwidth values obtained by using (11) for the vari-

ograms and using (12) for the cross-variogram are ĥX = 173.92 (basal area), ĥX = 247.30

(height), ĥX = 88.43 (slope), ĥX = 242.62 (elevation), ĥXY = 187.34 (basal area-height),

ĥXY = 94.75 (basal area-slope), ĥXY = 242.52 (basal area-elevation), ĥXY = 231.91
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(height-slope), ĥXY = 246.98 (height-elevation). As with the spatial analysis of one
variable, here, we constructed a codispersion map to provide better insight into the
spatial associations between all pairs of variables in several different directions on a two-
dimensional space. Figure 3 shows the codispersion maps that were created from the
variables of interest. Note from Figure 3(a) that the codispersion coefficient between
basal area and height is high (greater than 0.6) in all directions. The smallest values
values are obtained in all directions for a small lag distance. The largest values occur
for lag distances bigger than 3000 meters for the angles between 45◦and 135◦. Figure
3(c) shows that the codispersion coefficients between height and elevation are negatively
correlated (-0.6) for angles between 90◦and 155◦. The same pattern can be observed for
the codispersion coefficient for angles between 0◦and 90◦and lag distances greater than
2000 meters. This is consistent with the terrain features, specifically with the existence
of a river that passes through the lower areas of the study region. Hence, associations
between large tree heights and small elevations are expected. The values of the codisper-
sion coefficient between the variables height and slope show that the spatial association
is very small for an angle of 90◦at any distance lag. There is clear vertical banding in
the middle of the codispersion map (Figure 3(e)) highlighting the small values of the
association between these variables in the center of the image. We also find a weak in-
verse association (-0.3) at the edges of the codispersion map, for lag distances greater
than 2000 meters forming another vertical pattern for an angle of 90◦. Figure 3(g) shows
an inverse correlation (-0.4) along the 135◦line. The spatial association for lag distances
greater than 3000 meters and for directiond between 0 ◦ans 90 ◦is is negligible. Figure
3(i) shows small spatial association along the 90◦line at aby distance lag. Negative spatial
association is observed for lag distances greater than 1000 meters for an angle of 90◦.
Again, certain patterns are present at the edges of the image in the same way as we
pointed out for the variables height and slope. The codispersion map between elevation
and slope is not shown here because the main goal is to study the spatial association
between environmental and terrain variables.

In order to provide a measure of uncertainty for the codispersion coefficient for the
forestry data analyzed in this section, the block bootstrap introduced by Sherman (1996)
for statistics computed from a spatial lattice was implemented. The spatial locations
shown in Figure 1 were divided into six non overlapping blocks to ensure that in each
block will be enough points to estimate the variance of the codispersion coefficient for
distance lags less than 1187.69 meters, which corresponds to the mimimum distance over
all the maximum distances between points computed from the six blocks considered in
this study. The bootstrap variance associated with the codispersion coefficients between
the pairs of variables of interest was computed following the guidelines given in Sherman
(1996), the results are displayed in Figure 3. Values of the variance for those directions
in which the number of points were not enough to get an estimation were labeled with
white color as is shown in Figure 3(f) and 3(j).

Using the point estimations and variances of the codispersion coefficient provided
above, further statistical inference can be conducted in addition to the analysis carried
out in this paper.

7. Discussion and conclusions

We have introduced a nonparametric approach for estimating the codispersion between
two spatial processes. The proposal is a Nadaraya-Watson type estimator, which is a
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(a) Basal Area v/s Height (b) Bootstrap variance

(c) Height v/s Elevation (d) Bootstrap variance

(e) Height v/s Slope (f) Bootstrap variance

(g) Basal Area v/s Elevation (h) Bootstrap variance

(i) Basal Area v/s Slope (j) Bootstrap variance

Figure 3. Codispersion map between all pairs of variables of interest, and the corresponding
block bootstrap variance computed using Sherman’s approach.
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ratio between a kernel estimation of the cross-variogram and the square root of the semi-
variograms. The introduction of this type of estimator is relevant for attempts to quantify
spatial associations between two spatial sequences, such as the forest variables included
in this paper.

The present study was supported by asymptotic results that led to the consistency
of the proposed estimator. Under regularity conditions, explicit expressions for the bias
and mean square error were developed for the cross-variogram and the consistency of the
kernel estimator of the codispersion was established. We also derive a rule to compute the
bandwidth for the kernel variogram and suggest a simple way to compute the bandwidth
associated with the kernel cross-variogram, both proposals were supported by theoretical
results.

The finite sample simulation results described in Section 5 showed that the kernel es-
timator of the codispersion performs better than the widely used empirical estimator of
the codispersion first introduced by Matheron. After considering several different scenar-
ios (not shown here), the kernel estimator of the codispersion was not sensitive to the
choice of the kernel function. The computation of the kernel estimator is very intensive
and demanding. The study of efficient computational routines specially adapted for large
data sets is necessary and is a matter for further research.

The study of the asymptotic distribution of the kernel estimator of the codispersion was
not covered in this paper, but is required to establish confidence limits of the codispersion
for a given lag distance. Although the extension of this result is not straightforward for
the case of the codispersion, the additional assumptions required to obtain asymptotic
normality of the kernel estimator of the semivariogram are restrictive. Instead, for the
practical example discussed in Section 6, the computation of the variance of the coefficient
was approached by existing block bootstrap techniques, developed for statistics computed
from processes that are measured over rectangular grids.

The codispersion map developed for the forest variables studied in Section 6 highlights
the wide range of possibilities for researchers working with two or more spatial variables
measured at the same locations. The spatial association between two processes can be
computed and visualized in the same plot for different directions, highlighting the smallest
and largest values on two-dimensional space. Specifically, the spatial relationships found
for the forest variables are of interest for people who perform forest inventories. Several
related problems arise from a correlation analysis of these variables. For example, it is
not clear how to decrease the effective sample size as a function of correlation in later
studies, or how to use the information of the process X(·) to study the process Y (·).
In this context, the nonparametric codispersion coefficient may help to answer these
questions by quantifying the spatial association as a function of the lag distance, in two-
dimensional space. When working with more than two spatial variables, a codispersion
matrix may be defined to study problems analogous to dimension reduction techniques,
such as principal components analysis. These topics are a matter for future research.

Finally, R-code to compute the kernel estimation of the codispersion described in the
article has been developed. A brief description of the routine and examples can be found
in Web appendix B.
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Appendix A. Proof of the Results in Section 3 and 4

Proof of Theorem 3.1

According to Assumption (A3) the spatial locations are given by si = λui. Following
Garcia-Soidan (2007), let us write U i,j = U i −U j and define the following quantities

a1(k) =
∑
i 6=j

K

(
k− λU i,j

h

)
,

a2(k) =
∑
i 6=j

K

(
k− λU i,j

h

)
(γXY (λU i,j)− γXY (s)),

a3(k) =
∑
i 6=j

(
K

(
k− λU i,j

h

))2

ψ(λU i,j ,0, λUi,j),

a4(k) =
∑

(i,j,k)∈B1

K

(
k− λU i,j

h

)
K

(
k− λU i,k

h

)
ψ(λU i,j ,0, λU i,k),

a5(k) =
∑

(i,j,k,l)∈B2

K

(
k− λU i,j

h

)
K

(
k− λUk,l

h

)
ψ(λU i,j , λU i,k, λU i,l),

where B1 = {(i, j, k) : i 6= j, k y j 6= k}, and B2 = {(i, j, k, l) : i 6= j, k, l y j 6= k, l y k 6=
l}. Then almost surely for s 6= 0 we obtain

a1(k) = f1(0)n2λ−dhd + o(n2λ−dhd),

a2(k) =
1

2
f1(0)cK 4γXY (k) n2λ−dhd+2 + o(n2λ−dhd+2),

a3(k) = f1(0)dKψ(k,0,k)n2λ−dhd + o(n2λ−dhd),

a4(k) = f2(0,0)ψ(k,0,k)n3λ−2dh2d + o(n3λ−2dh2d),

a5(k) = f3(0,0,0)n4λ−3dh2d

∫
Rd
ψ(k, ξ, ξ + k)dξ + o(n4λ−3dh2d).

Then, the bias is

E[γ̆XY h(k)]− γXY (k) = E[E[γ̆XY h(k)/U1, . . . ,Un]]− γXY (k),

= E
[
a2(k)

a1(k)

]
,

=
cKd
2
4γX(k) h2 + o(h2). (A1)

Similarly, using the convergence orders given for a1(k)− a5(k) we have

V ar[γ̆XY h(k)] = E[V ar[γ̆XY h(k)/U1, . . . ,Un]] + V ar[E[γ̆XY h(k)/U1, . . . ,Un]].
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Now, from equation(A1) one obtains V ar[E[γ̂XY h(k)/U1, . . . ,Un]] = o(h4). Finally,

E[V ar[γ̆XY h(k)/U1, . . . ,Un]] =
E[2a3(k) + 4a4(k) + a5(k)]

4a2
1(k)

=
dKA1,d(k)

2f1(0)
n−2λdh−d +

f3(0,0,0)A2,d(k)

(2f1(0))2
λ−d

+ o(n−2λdh−d + λ−d).

�

An Example in Which Conditions (H1) and (H2) Are Satisfied

Consider a 2n−variate Gaussian random vector (X(s1), . . . , X(sn), Y (s1), . . . , Y (sn))T

with mean 0 and covariance matrix

Σ =

(
Σ1 Σ12

Σ21 Σ2

)
,

where (Σ1)ij = σ2
X−γX(si−sj), (Σ2)ij = σ2

Y −γY (si−sj) for all i, j = 1, . . . , n, γX(∞) <
∞, and γY (∞) <∞. Let us denote the cross-covariance function between X(·) and Y (·)
as CXY (si− sj) such that the cross-covariance matrix (Σ12)ij = σXY −CXY (si− sj) for
all i, j = 1, . . . , n, and assume that Σ21 = ΣT

12. By properties of the covariance function
we can write

Cov[(X(si)−X(sj))(Y (si)− Y (sj)), (X(sk)−X(sl))(Y (sk)− Y (sl))] =

E(X(si)X(sk)Y (si)Y (sk)−X(sj)X(sk)Y (si)Y (sk)−X(si)X(sl)Y (si)Y (sk)

+X(sj)X(sl)Y (si)Y (sk)−X(si)X(sk)Y (sj)Y (sk) +X(sj)X(sk)Y (sj)Y (sk)

+X(si)X(sl)Y (sj)Y (sk)−X(sj)X(sl)Y (sj)Y (sk)−X(si)X(sk)Y (si)Y (sl)

+X(sj)X(sk)Y (si)Y (sl) +X(si)X(sl)Y (si)Y (sl)−X(sj)X(sl)Y (si)Y (sl)

+X(si)X(sk)Y (sj)Y (sl)−X(sj)X(sk)Y (sj)Y (sl)−X(si)X(sl)Y (sj)Y (sl)

+X(sj)X(sl)Y (sj)Y (sl))

− E((X(si)−X(sj))(Y (si)− Y (sj)))E((X(sk)−X(sl))(Y (sk)− Y (sl))).

In the Gaussian case the following identity holds

E(X(si)X(sj)X(sk)X(sl)) = σijσkl + σikσjl + σilσjk,



April 11, 2013 15:32 Journal of Nonparametric Statistics JNSreviewedFER1

24 REFERENCES

where σij corresponds to the covariance betweenX(si) andX(sj). Then a straightforward
calculation shows that

ψ(si − sj , si − sk, si − sl) = γ2
XY (si − sk) + γ2

XY (sj − sk) + γ2
XY (si − sl) + γ2

XY (sj − sl)

− 4σXY +
1

2

√
gX(si − sj , si − sk, si − sl)gY (si − sj , si − sk, si − sl)

+ CXY (sj − sk)CXY (sl − si) + CXY (si − sk)CXY (sl − sj)

+ CXY (sj − sl)CXY (si − sk) + CXY (si − sl)CXY (sj − sk),

where gX and gY correspond to the g function given in (A7) for the processes X(·) and
Y (·) respectively. Thus Assumption (H1) is satisfied.

To inspect Assumption (H2) we consider again the Gaussian case. By using the in-
equalities |γXY (k)|2 ≤ γX(k)γY (k) and |CXY (k)|2 ≤ CX(0)CY (0), it can be shown that

ψ(si − sj , si − sk, si − sl) ≤ 4CX(0)CY (0) + γX(si − sk)γY (si − sk)

+ γX(sj − sk)γY (sj − sk) + γX(si − sl)γY (si − sl) + γX(sj − sl)γY (sj − sl)− 4σXY

+
1

2

√
gX(si − sj , si − sk, si − sl)gY (si − sj , si − sk, si − sl). (A2)

Then, integrating both sides of (A2) over the region L(x), the condition (H2) is obtained.

Proof of Theorem 3.2

Under the Assumptions of the Theorem the following is true: γ̆Xh2 (k) converges in
probability to γX(k), γ̆Yh3 (k) converges in probability to γY (k), and γ̆XY h1 (k) con-
verges in probability to γXY (k). Since

√
xy is a continuous function, it follows that√

γ̆Xh2 (k)γ̆Yh3 (k) converges in probability to γX(k)γY (k). Because γ̆XY h1 (k) converges in

probability to γXY (k) (Theorem 1), we obtain ρ̆XY h
(k) =

γ̆XY h1
(k)√

γ̆Xh2
(k)γ̆Yh3

(k)

P−→ ρXY (k).

�

Proof of Theorem 4.1

A straightforward calculation shows that

∂AMISE[γ̆Xh(k)]

∂h
= 4C1h

3 − dC2h
−(d+1).

Since AMISE[γ̆Xh(k)] is a convex function with respect to h we can find the minimum by

solving the equation
∂AMISE[γ̆Xh (k)]

∂h = 0. This implies that 4C1h
3 = dC2h

−(d+1). Thus

hAMISE =
(
d
4
C2

C1

) 1

d+4

. �
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Proof of Proposition 4.4

We give a proof of the constructive type. The assertion is verified whenever the determi-
nantal inequality

ψθ

(
ĥX , ĥX

)
× ψθ

(
ĥY , ĥY

)
≥ ψθ

(
ĥX , ĥY

)
× ψθ

(
ĥY , ĥX

)
(A3)

holds for any upperly bounded pair (ĥX , ĥY ) and for any generating function ϕ ∈ Φ.

Direct inspection shows that ψθ(ĥX , ĥX) = ĥX for any function ĥX and generating

function ϕ ∈ Φ (and similarly for ĥY ), and for any 0 ≤ θ ≤ 1. Also, from the arguments

in Hardy et al. (1934) we have ψθ(ĥX , ĥY ) ≤ Gθ(ĥX , ĥY ), so that the right hand side of

Equation (A3) shall be bounded by ĥX ĥY . The proof is completed. �


