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Abstract

We propose to use the codispersion coefficient to define a measure of similarity between

images. This coefficient has been widely used in spatial statistics to quantify the association

between two spatial processes, and here we explore its capabilities in an image processing

context. It is mathematically simple to compute and possesses good statistical properties.

The new measure takes into account the spatial association in a specific direction h between

a degraded image and the original unmodified image. Three applications are developed

to illustrate the capabilities of our proposal. The defined measure captures the spatial

association that is produced by fitting AR-2D processes with different window sizes. It is

able to distinguish the levels of similarity between two images for specific directions in two-

dimensional space. Finally, it detects stochastic resonance when an image is transmitted

by a nonlinear device.
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1 Introduction

Image quality measures play an important role in many different fields and applications. The

criteria for quantifying the dissimilarity between two images have been extensively studied in

the literature [1], [2]. Specifically, a measure called the structural similarity (SSIM) index has

been proposed as a measure of image quality [3], and later, an application of SSIM to stochastic

resonance was studied in the context of nonlinear image transmission [4]. Additional information

about image quality measures and dissimilarity between images can be found in [5], [6].

In the context of spatial sequences, an initial study on the association between two spatial

processes was performed in [7]. Subsequently, a coefficient was proposed that is a corrected version

of the correlation coefficient [8]. In contrast, the codispersion coefficient that was first introduced

by Matheron [9] was used to quantify the spatial association in many different applications. This

coefficient is a generalization of the classical variogram commonly used to describe the association

structure of a single process. Three decades later, the codispersion coefficient received attention

from a theoretical point of view [10]. Recently, the coefficient was adapted to the case where the

processes are defined on the real line. In that case, the codispersion captures the comovement

between the trajectories of two stochastic processes [11].

In this work, we propose to use the codispersion coefficient to define a measure of similarity

between two images in a specific direction h, in the same way as the cross-correlation function is

used in time series. Three applications with synthetic and real data will be described to obtain

better insight into the performance of the proposed measure in practice.

2 The Codispersion Coefficient

Consider two weakly stationary processes, X(s) and Y (s), s ∈ D ⊂ Zd. The cross-variogram

between X(s) and Y (s) is defined as the following:

γ(h) = E[X(s+ h)−X(s)][Y (s+ h)− Y (s)], (1)
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such that s, s+ h ∈ D. The codispersion coefficient is a normalized version of (1) given by

ρ(h) =
γ(h)√

VX(h)VY (h)
, (2)

where VX(h) = E[X(s + h) − X(s)]2 and similarly for VY (h). It is obvious that |ρ(h)| ≤ 1.

For cases in which X(s) and Y (s) are parametric (spatial ARMA) models defined on the plane,

explicit expressions for ρ(h) have been proposed in the literature [10]. Also, under regularity

conditions, the sample codispersion coefficient defined by

ρ̂(h) =

∑
s,s+h∈D′ asbs√
V̂X(h)V̂Y (h)

(3)

with s = (s1, s2), h = (h1, h2), D
′ ⊆ D, #(D′) < ∞, as = X(s1 + h1, s2 + h2) − X(s1, s2),

bs = Y (s1 +h1, s2 +h2)−Y (s1, s2), V̂X(h) =
∑

s,s+h∈D′ a2s, and V̂Y (h) =
∑

s,s+h∈D′ b2s is consistent

and asymptotically normal [10]. These statistical properties allow us to construct confidence

intervals and hypothesis tests for the coefficient [11].

This coefficient has been useful in many different applications. For example, the spatial

covariation of Azotobacter abundance and soil properties was analyzed in [12]. Rukhin and

Vallejos [10] computed the codispersion coefficient from images related to the effects of the

dispersion and concentration of one retardant to improve the flammability properties of polymers.

In [13] the codispersion coefficient was used to quantify the spatial and temporal patterns of

Lolium rigidum-Avena sterilis mixed populations in a cereal field.

3 Image Quality Assessment

Given two sequences x = {X(si) : i = 1, 2, . . . , n} and y = {Y (si) : i = 1, 2, . . . , n}, in [3] it was

proposed that the index SSIM be defined by the following equation:

Q =
4SXYX Y

(S2
X + S2

y)[X
2

+ Y
2
]

=
SXY
SXSY

· 2X Y

X
2

+ Y
2 ·

2SXSY
S2
X + S2

Y

= C ·M · V, (4)

where C = SXY

SXSY
models the linear correlation between x and y, M = 2X Y

X
2
+Y

2 measures the

similarity between the sample means (luminance) of x and y, and V = 2SXSY

S2
X+S2

Y
measures the

similarity related to the contrast between the images. Coefficient Q is defined as a function of
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the correlation coefficient; hence, it is able to capture only the linear association between x and

y but is unable to account for other types of relationships between these sequences, for example,

the spatial association in a specific direction h. This disadvantage of Q led us to consider a new

proposal to address image quality assessment, namely, the CQ index, which is defined as:

CQ(h) = ρ̂(h) ·M · V, (5)

where M and V are defined as in (4). Notice from (5) that, instead of using the correlation

coefficient, we use the codispersion index to account for the spatial association between sequences

x and y in the direction h. We recall that ρ̂(h) does not necessarily capture similarity that is

related to the patterns or shapes that are present in the images; instead, it captures the spatial

dependence between sequences x and y for a given lag distance h.

4 Applications to Images

We developed three examples in different scenarios to explore some features of the CQ index.

Four real images were used in this section, Lenna, Mandrill, Girl and Wheat, all taken from the

USC-SIPI image database [14].

4.1 Similarity Between Images Generated by AR-2D Models

In this experiment, we show that the CQ index has the capability of capturing the spatial

association level between two images. First, we consider an original image and then we apply the

algorithm that was developed in [15] to obtain an image that is generated by a two-dimensional

autoregressive (AR-2D) process. This algorithm consists of locally fitting an AR-2D model to

the original image, which is divided into small regions. An AR-2D model is fitted to each of these

regions so that a new image is generated, putting together all of the images that were generated

by fitting the local AR-2D models to the original image. In each case, a least squares estimation

for the parameters of the AR-2D model was considered. The fitted autoregressive image strongly

depends on the size of the moving window. Indeed, a small window size is associated with a large

number of AR models that were fitted to the original image (see [15]). This process produces a

4



better local approximation, and hence, the patterns in the fitted image are very well represented.

However, when the window size is large, the fitted image is a poor representation of the original

image (even if there are not visually detectable differences). In [15], the residual images were

analyzed to construct an image segmentation algorithm. Here, we compare the indices CQ and

Q to quantify the similarity between the original and each of the new images that were generated

by the algorithm.

Figure 1(a) shows an original image of size 512× 512 (Lenna). Images (b)-(i) were obtained

by using the algorithm developed in [15] with a moving window size of 4 × 4; 8 × 8; 16 × 16;

32×32; 64×64; 128×128; 256×256, and 512×512, respectively. Visually, there is no difference

between the original image and any of the images generated by the algorithm; however, the

residual images reveal significant differences (see for example, images (j), (k) and (l) in Figure

1). More details about residual images in image segmentation can be found in [15].

Table 1 shows that the maximum value of the CQ index corresponds to the smallest (optimal)

moving window size (4×4). This is in agreement with the results found in [15] (based on the mean

square error) and indicates that an image that is generated with a small window size is more

spatially associated with the original image than with other images that were generated with

bigger window sizes. However, in this example, the Q index is unable to capture the dependence

of the fitted image on the window size. Indeed, while the window size varies, Q shows a non-

pattern performance. Similar results were obtained for a large set of images, all taken from the

USC-SIPI image database [14]. A full comparative study between both measures considering

others degradation schemes will be a topic to be tackle in future research.

Note from the Table 1, the similarity between C and Q, as well as ρ̂(1, 1) and CQ(1, 1). This

behavior results from the fact that there are not significant differences in the luminance and

contrast between the original and fitted images. As a result, in (4) and (5), M and V are close

to 1. This pattern may not happen for other images.
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Figure 1: (a) Original image (Lenna); (b)-(i) Images generated by an AR-2D models with window

sizes of 4× 4; 8× 8; 16× 16; 32× 32; 64× 64; 128× 128; 256× 256, and 512× 512, respectively;

(j), (k) and (l) are the residual images for (b), (f) and (i) respectively.
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Table 1: C, Q, ρ̂(1, 1) and CQ(1, 1) for different window sizes.

Window Size C Q ρ̂(1, 1) CQ(1, 1)

4× 4 0.9788 0.9787 0.6197 0.6196

8× 8 0.9754 0.9751 0.5757 0.5755

16× 16 0.9777 0.9773 0.6076 0.6073

32× 32 0.9777 0.9772 0.6056 0.6053

64× 64 0.9776 0.9751 0.6015 0.5999

128× 128 0.9771 0.9766 0.5885 0.5882

256× 256 0.9768 0.9758 0.5821 0.5815

512× 512 0.9766 0.9763 0.5788 0.5786

4.2 Measuring Similarity in different directions

The aim of this section is to show the capacity of CQ to capture different levels of similarity

between two images, considering different directions in the images. We work over three images,

Lenna, Mandrill, and Girl (from the database [14]). The same algorithm used in the previous

section was considered to fit an AR-2D process to the images. We generated the best and the

worst fit for each image, and then we calculated the indices Q and CQ between the fitted and

original images. In the computation of CQ, three different directions were used: h = (1, 0),

h = (0, 1) and h = (1, 1). Table 2 shows that CQ varies for different directions, and the largest

values of the coefficient are associated with the window size that produces the best fit (4 × 4),

whereas Q yields the same value for the examined directions exhibiting its independence of h.

In general, the selection of h is of great importance. In some cases there is a special interest

in a particular direction h in which CQ(h) can be computed. However, in other circumstances

there is no prior knowledge regarding the best value of h. In practical situations, we suggest to

use the codispersion map in the same way as the variogram map is used in spatial statistics (see

[16]). This is a diagram in which the codispersion coefficient is computed over a grid including

many selected directions on the plane, providing a useful tool to look (for example) for the largest

and smallest values of the spatial association between the processes.
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Table 2: Q and CQ for three different lags considering the smallest and the largest window size.

Image Window Size Q CQ

CQ(1, 0) CQ(0, 1) CQ(1, 1)

Lenna
4× 4 0.9787 0.3170 0.5368 0.6196

512× 512 0.9763 0.3009 0.5078 0.5786

Mandrill
4× 4 0.9196 0.6464 0.4184 0.6884

512× 512 0.8706 0.3999 0.0861 0.4586

Girl
4× 4 0.9617 0.4538 0.3786 0.5481

256× 256 0.9707 0.4234 0.3127 0.5086

4.3 Stochastic Resonance

In this section, we use and confront Q with the indices ρ̂(h) and CQ(h) to assess image transmis-

sion by a nonlinear device in the presence of noise. Specifically, we study the stochastic resonance

effect, where noise can play an important role when constructing an image that is transmitted

by a nonlinear sensor. An input image x is contaminated independently by an additive noise n

that has a zero mean and standard deviation σ. The noise image x+n is then transmitted by a

nonlinear device, which is defined as the following:

y = g(x + n). (6)

We consider g(·) as a sensor that remains linear for small positive intensities but that saturates

when the intensities exceed a level θ [4], as follows:

g(u) =


0, for u < 0,

u, for 0 ≤ u ≤ θ,

θ, for u > θ.

(7)

An experiment with a real data set was performed considering an image that has intensities in

[0, 1] and a saturation level of θ < 1. The image shown in Figure 3 (a) was contaminated by

a zero mean Gaussian noise n. Using (7), the image was transmitted considering a threshold

θ = 0.2. The coefficients ρ̂(h), Q and CQ(h) were then computed for different values of σ that

belong to the interval [0, 3]. The results are shown in Figure 2. We see from Figure 2 that all of

the coefficients achieve their best values at a nonzero level of σ. The maximum values of ρ̂(h), Q

and CQ(h) are attained at σ = 0.26, σ = 0.32 and σ = 0.24, respectively. This result reflects the
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possibility of a constructive action of the noise to improve the image transmission in the presence

of a strong saturation of the sensor.

A visual appreciation regarding the impact of noise on the input-output similarity can be

obtained from Figure 3. In (Figure 3 (c)-(d)), the reconstructive effect produced by the Gaussian

noise can be observed.

The results presented in Section 4 are not restrictive to the images that are treated in this

paper. There is a large set of images for which the experiments developed in this article can be

replicated.

5 Conclusion

This paper proposes a measure of similarity between images based on the codispersion coefficient

and illustrates its capabilities in an image processing framework. This new index, called CQ, can

quantify the similarity between images that is generated using a local approximation of AR-2D

processes with different window sizes. Moreover, CQ captures different levels of spatial similarity

between two images by considering different directions in two-dimensional space. Similarly to

other measures of association, CQ detects stochastic resonance when the original image has been

additively contaminated with Gaussian noise. In the light of the examples presented in this

article, we suggest in practice to use index CQ as a complement of other quality measures, to

not disregard possible spatial association between the processes.

Acknowledgment

R. Vallejos was partially supported by UTFSM grant 12.10.03, CCTVal FB 0821, under grant

FB/01RV/11, and Fondecyt grant 1120048, Chile. P. Lamberti is a member of CONICET,

Argentina. S. Ojeda and P. Lamberti thank SeCyT-UNC for financial assistance. The authors

also acknowledge the suggestions from two anonymous referees, an associate editor and the editor

of JEI that improved the manuscript.

9



References

[1] J. B. Martens and L. Meesters, “Image Dissimilarity,” Signal Process., vol. 70, pp. 155-176,

1998.

[2] A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,” IEEE

Trans. Commun., vol. 43, pp. 2559-2565, 1995.

[3] Z. Wang and A. B. Bovik, “A universal image quality index,” IEEE Signal Processing Letters,

vol. 9, pp. 81-84, 2002.

[4] D. Rousseau, A. Delahaies and F. François-Blondeau, “Structural similarity measure to as-

sess improvement by noise in nonlinear image transmission,” IEEE Signal Processing Letters.,

vol. 17, 36-39, Jan. 2010.

[5] T. N. Pappas and R. J. Safranek, “Percentual criteria for image quality evaluation,” in

Handbook of Image Video Processing, A. C. Bovik, Ed. New-York: Academic, 2000.

[6] Z. Wang, A. B. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality assessment: From

error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, pp. 600-612,

2004.

[7] D. TjΦstheim, “A measure of association for spatial variables,” Biometrika, vol. 65, pp.

109-114, 1978.

[8] P. Clifford, S. Richardson and D. Hémon, “Assessing the significance of the correlation

between two spatial processes,” Biometrics vol. 45, pp. 123-134, 1989.

[9] G. Matheron, Les Variables Régionalisées et leur Estimation Paris: Masson, 1965.

[10] A. Rukhin, and R. Vallejos, “Codispersion coefficient for spatial and temporal series,”

Statistics and Probability Letters, vol. 78, pp. 1290-1300, 2008.

[11] R. Vallejos, “Assessing the association between two spatial or temporal sequences,” Journal

of Applied Statistics, vol. 35, pp. 1323-1343, 2008.

10



[12] R. J. Barnes, S. J. Baxter and R. M. Lark, “Spatial covariation of Azotobacter abundance

and soil properties: A case study using the wavelet transform,” Soil Biology & Biochemistry

vol. 39, pp. 295-310, 2007.

[13] J. M. Blanco-Moreno, L. Chamorro and F. X. Sanz, “Spatial and temporal patterns of

Lolium rigidum-Avena sterilis mixed populations in a cereal field,” European Weed Research

Society Weed Research vol. 46- pp. 207-218, 2006.

[14] USC-SIPI image database. http://sipi.usc.edu/database/.

[15] S. Ojeda, R. Vallejos and O. Bustos, “A New Image Segmentation Algorithm with Applica-

tions to Image Inpainting,” Computational Statistics & Data Analysis, vol. 54, pp. 2082-2093,

2010.

[16] R. Goovaerts, Geostatistics for natural resources evaluation New York: Oxford University

Press, 1997.

11



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
1

0.
2

0.
3

0.
4

Noise rms amplitude

S
im

ila
rit

y 
m

ea
su

re
s

Codispersion
Q
CQ(h)

Figure 2: For the transmission by (7) with saturation level θ = 0.2 of the gray level image x of

Figure 3 (a) as a function of the rms amplitude σ of the zero mean Gaussian noise n in (6). The

plots are ρ̂(h), Q and CQ(h) versus σ, for (h1, h2) = (1, 1).
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Figure 3: (a) Original input image x (Wheat); (b)-(e) output image y with θ = 0.2; (b) output

y with no contamination (σ = 0); (c) output y with σ = 0.26, maximizing ρ̂(1, 1); (d) output y

with σ = 0.32, maximizing Q; (e) output y with σ = 0.24, maximizing CQ(1, 1).
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